

Diseño y simulación de la capa de comunicaciones para sistemas eléctricos distribuidos

Universidad de Alcalá

22 de septiembre de 2021

de Madrid

Índice

- Introducción
- Mensajes en microrredes
- Identificación de tecnologías para transmisión
- Estandarización de comunicaciones
- Caso de uso
- Integración de blockchain
- Mejoras de seguridad
- Publicaciones

Introducción

Objetivo 1: Diseño, simulación y evaluación de la capa de comunicaciones para sistemas energéticos distribuidos operando en microrredes.

- Evaluar alternativas disponibles, haciendo factible la correcta operación de los elementos que componen las Microrredes
- Proponer una arquitectura de comunicaciones adecuada para la operación distribuida
- Validación de la arquitectura de comunicaciones

Mensajes en Microrredes

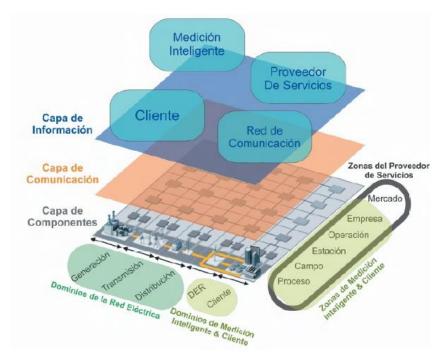


Figura 3. Relación dominios del modelo conceptual FG-Smart y la capa de componentes de SGAM

Fuente: (CEN-CENELEC-ETSI Smart Grid Coordination Group, 2014; Lee y Su, 2013; Budka, et al., 2014; Nieße, et al., 2014)

Las comunicaciones son uno de los ejes fundamentales para asegurar el despliegue de las Microrredes, habilitando el flujo de información necesario para operar los elementos de red y la gran cantidad de información que estos generan.

Mensajes en Microrredes

Requerimientos de aplicaciones

Aplicación	Tamaño típico de datos (bytes)	Latencia	Fiabilidad (%)
Lectura de contadores	100 - 2400	15 s – 4 h	> 98
Precio	100	< 1 min	> 98
Respuesta a la demanda	100	< 1 min	> 99,5
Operación del elemento de corte	25	< 1 min	> 98
Automatización de la distribución	100 - 1000	< 5 s	> 99,5
Restauración de cortes	25	< 20 s	> 98
Gestión del almacenamiento	25	< 5 s	> 98
Actualizaciones	25 k – 2 M	< 2 min – 7 días	> 98
Mensajería a clientes	50 – 200	< 15 s	> 99

PROMINT-CM

Mensajes en Microrredes

Mensaje	Requerimientos de latencia		
Control de protecciones	4 ms		
Monitorización	1 s		
Control de DERs	16 ms — 100 ms		
Información de operación y mantenimiento	1 s		
Mensajes que requieren acciones inmediatas por los dispositivos que los reciben	3 ms — 100 ms		

S. Marzal, R. Salas, R. González-Medina, G. Garcer´a, and E. Figueres, "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, vol. 82, pp. 3610 – 3622, 2018

Identificación de tecnologías para transmisión

WAN

Coverage area: 10km-100km Data rate: 1Mbps-1Gbps

Technologies:

Fiber Optics, WiMAX, PLC and Cellular

NAN

Coverage area: 100m-10km Data rate: 1-100kbps

Technologies:

PLC, ZigBee mesh network, WiFI mesh network, Cellular, DSL and WiMAX

HAN/BAN/ IAN

Coverage area: 1-100m Data rate: 1-100kbps

Technologies:

PLC, Bluetooth, Ethernet, ZigBee and WiFI

Cableadas

- Ethernet y Fibra Óptica
 - Alto coste en caso de no existir infraestructura.
 - Baja latencia e inmunidad al ruido. Gran ancho de banda.

Inalámbricas

- o Wi-Fi
 - Bajo coste y gran ancho de banda.
 - Alcance bajo.
- o LoRa
 - Bajo consumo
 - No es inmune a interferencias.
- Móvil (LTE, 4G, 5G, ...)
 - Gran ancho de banda y alcance.
 - Pago mensual
- WiMAX
 - Alto coste

Resultados pruebas reales

Cumple con los requisitos de todas las aplicaciones:

- Distancias menores a 100 m:
 Ethernet
 - Latencia media: 0,8 ms
 - Latencia máxima: < 1 ms
 - Fiabilidad: 100 %
 - Inconvenientes
 - Coste de instalación
 - Hay que llevarlo físicamente
- Distancias mayores a 100 m: Fibra óptica
 - Inconvenientes
 - Aún mayor coste de instalación
 - Hay que llevarlo físicamente

Resultados pruebas reales

Alternativas válidas para aplicaciones menos exigentes:

- Rango bajo: Bluetooth y Wi-Fi 6
 - Inconvenientes:
 - Rango: Bluetooth 40 m, WiFi 70 m
 - Latencia. Bluetooth: 90 ms 1 s, Wi-Fi: 2 130 ms
- Rango medio: LoRa
 - Inconvenientes:
 - Alcance < 500 metros
 - Latencia elevada > 100 ms
 - Latencia para máximo alcance: 1,8 s
 - Baja fiabilidad.
- Gran rango: Móvil (4G)
 - Inconvenientes
 - Latencia: 30 100 ms
 - Coste por servicio
 - Dependencia de empresa de telecomunicaciones

Bluetooth 5.0

Resultado pruebas reales

Alternativa para todos los rangos y todas las aplicaciones: **Móvil** (5G)

Características:

Latencia: 1 – 4 ms

Velocidad: > 50 Mbps

Fiabilidad: 99,9999 %

o Bajo consumo de energía

Inconvenientes:

- Coste actual de los dispositivos
- Coste por servicio

Estandarización de comunicaciones

Objetivos que se pretenden alcanzar:

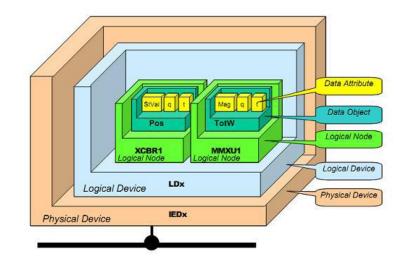
- 1. Interoperabilidad. Integrar equipos de diferentes fabricantes.
- 2. Bajos costes en cableado y diseño.
- 3. Agilidad en los procesos de puesta en marcha y mantenimiento.

IEC 61850

Se basa en tres principios:

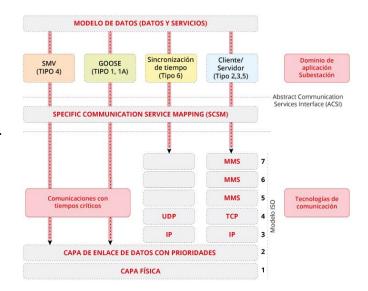
- Modelo de información único. Estructura de datos y jerarquías unificados para emplear en los dispositivos.
- Protocolo de comunicaciones común. Enviar la información necesaria cumpliendo los requisitos de tiempo y disponibilidad.
- 3. Formato de fichero de configuración. Modelo de fichero de configuración estandarizado

Se ha ido ampliando para cubrir todos los aspectos del sector eléctrico como los recursos distribuidos o la energía hidráulica.



Estandarización de comunicaciones

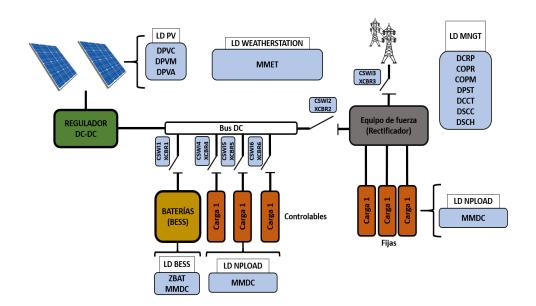
- Dispositivo físico
- Dispositivo lógico. Organiza información de cada dispositivo físico p. ej. control, protección, información, etc. Los nombres son libres.
- Nodo lógico. Funciones o componentes de automatización del sistema. Se identifican con 4 letras. Se encuentran definidos en la parte 7-4 del estándar.
- Objeto. Organiza información de cada Nodo lógico. Están definidos.
- Atributo. Valores que puede tomar cada Objeto. Están definidos.



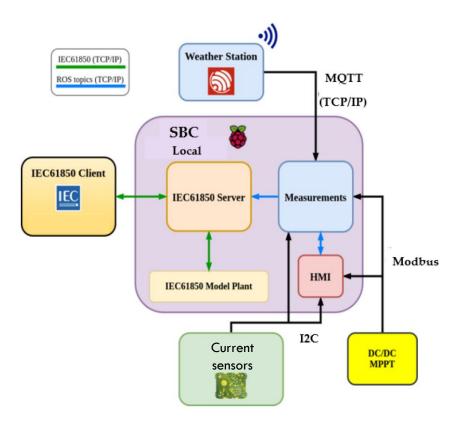
Estandarización de comunicaciones

Distintos protocolos según la información a transmitir

- Sampled Measured Values. Comunicación rápida de valores de medición, protección y control. Directamente sobre Ethernet (Capa 2 OSI). Mensajes estructura de publicador/suscriptor, el publicador envía los datos a todos los equipos de la red y cada equipo se suscribe a los datos para acceder a los mismos.
- GOOSE. Transmisión en tiempo real de eventos críticos.
 Estructura publicador/suscriptor. Latencia máxima de 3 ms.
- SNTP. Sincronización de tiempo de los dispositivos. Para la transmisión de los mensajes SNTP se utiliza el protocolo UDP (Capa 4 OSI).
- MMS. Intercambio de datos de la aplicación, parámetros de configuración de los dispositivos o datos de monitorización. Envía sus mensajes a través de conexiones TCP (Capa 4 OSI) y es utilizado para las comunicaciones cliente/servidor.



- Instalación de fotovoltaica
- Simula un nodo de una microrred
- Capacidad de almacenamiento de energía en batería
- Cargas controlables
- Posibilidad de conexión y desconexión de la red principal



- Es difícil encontrar dispositivos comerciales con el estándar IEC 61850
- Cada elemento tiene sus propios protocolos.
- Raspberry Pi como conversor de protocolos.
- Hemos creado un modelo de la planta con elementos del estándar

- Modelo de la planta en la Raspberry Pi
- El cliente IEC 61850
 únicamente debe
 comunicarse con el servidor
 IEC 61850.
- MQTT para comunicarse con la estación meteorológica.
- Modbus con regulador DC-DC
- I2C con los sensores de corriente

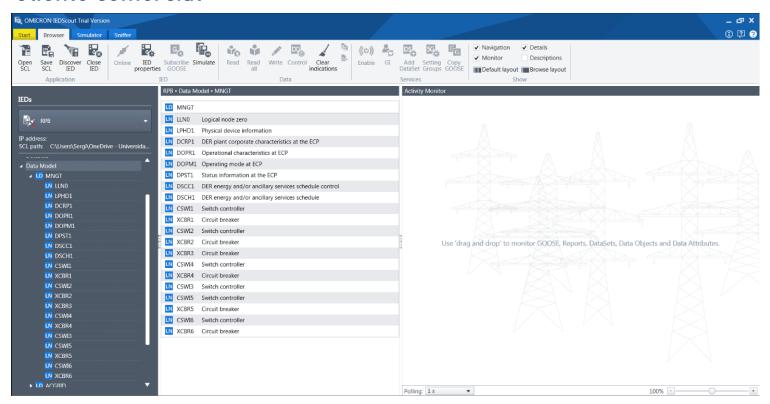
		ZRG	L class		
Data object name	Common data class	Explanation Shall be inherited from logical-node class (see IEC 61850-7-2)			M/O/C
LNName					
Data					
System logical noc	le data				
		LN shall inhert all mandatory data from common logical node class			М
		Data from LLN0 may op		$^{+}$	0
WRtg	ASG	Maximum power rating	,	$^{+}$	м
WRIG .	A30	Type of isolation:		t	
		Value	Explanation	t	
		0	Not applicable / Unknown	Ť	
		1	Power frequency transformer isolated	T	
IsoTyp	ENG	2	Hi frequency transformer isolated	T	М
		3	Non-isolated, grounded	Т	
		4	Non-isolated, isolated DC source	I	
		99	Other		
		Type of voltage regulat	gulation:		
		Value	Explanation	N	
		0	Not applicable / Unknown		
	ENG	1	Regulated output: fixed voltage		
VRegTyp		2	Regulated output: variable voltage		М
		3	Filtered output: load dependant		-
		4	Unregulated and unfiltered		
		99	Other	+	-
		Conversion type:		+	
		Value	Explanation		
	ENG	0	Not applicable / Unknown		
		1	Boost	t	
ConvTyp		2	Reducer	Π '	0
		3	Boost-reducer	Ť	
		99	Other	T	
				1	
		Type of cooling method:		L	
	ENG	Value	Explanation	0	
		0	Not applicable / Unknown		
		1	Passive air cooling (heatsink)		
CoolTyp		2	Forced air cooling (fan + heatsink)		0
		3	Fluid cooling (water)		
		4	Heat pipe		
		99	Other		-
				Т	
Status information		[C		Ŧ	
	ENG	Current connect mode: Value	Explanation	\vdash	
GridModSt		Value	Not applicable / Unknown	\vdash	-
		1	Disconnected	+	1
		2	Power not delivered	+	0
		3	Power flot delivered Power delivered	+	1
		99	Other	+	
		99	odici	+	1

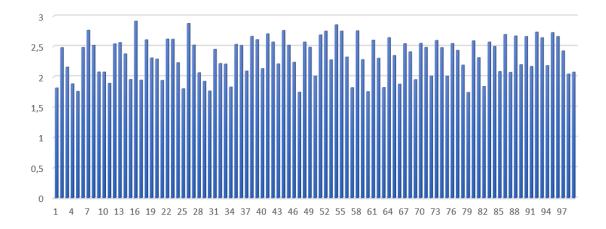
OutFilTyp ENG	Output filter type:				
		Value Explanation 0 Not applicable / Unknown			
					-
		1	None		
	ENG	2	Series filter (L)		0
		3	Parallel filter (LC)		
		4	Series-Parallel (LCL)		
	99	Other			
Stdby	SPS	Regulator stand-by	status - True: stand-by active	+	0
CurLev	SPS	DC current level available for operation - True: sufficient current			0
SwHz	ASG	Nominal frecuency of switching			0
Settings					
OutWSet	ASG	Output power setpo	int		0
InALim	ASG	Input current limit			0
InVLim	ASG	Input voltage limit			0
OutVSet	ASG	Output voltage setpoint			0
OutALim	ASG	Output current limit			0
Measured value	es				
HeatSinkTmp	MV	Heat sink termperat	ure: Alarm if over max		0
EnclTmp	MV	Enclosure temperat	ure		0
AmbAirTemp	MV	Ambient outside air	temperature		0
FanSpdVal	MV	Measured fan speed: Tach or vane			0

- Existen nodos lógicos para rectificador e inversor, pero no para regulador DC-DC.
- Hemos modelado un nuevo nodo lógico que contiene toda la información necesaria.


```
INFORME DEL ESTADO DE LA PLANTA HELIOS:
fodo LD_MNGT (1): ON
    -> Modo LD_MNGT_LN_DCRP (1): ON
         I----> DO PlntObSelf: Próposito/Obligación en el ECP: Funcionamiento de forma pasiva (siempre que sea posible FV
          ----> DO PlntOblBck: Próposito/Obligación en el ECP: No funciona como BackUp
    >Modo LD_MNGT_LN_DOPR (1): ON
         |----> DO ECPType: Conexión de una única DER a una cargo local,
                                                                                    q: QUALITY_VALIDITY_GOOD
     >Modo LD_MNGT_LN_DOPM (1): ON
   -->Modo LD_MNGT_LN_DPST (1): ON
         |----> DO ECPConn: No conectado eléctricamente al ECP, 0 q: QUALITY VALIDITY GOOD
  --->Modo LD_MNGT_LN_DSCC (1): ON
 --->Modo LD_MNGT_LN_DSCH (1): ON
--->Modo LD_MNGT_LN_XCBR1 (1): ON
         |----> DO Pos: Posicion del interruptor XCBR1 (BATERIAS): OFF
    >Modo LD_MNGT_LN_XCBR2 (1): ON
        |----> DO Pos: Posicion del interruptor XCBR2 (RECTIFICADOR): OFF
    ->Modo LD_MNGT_LN_XCBR3 (1): ON
|----> DO Pos: Posicion del interruptor XCBR3 (RED): OFF
    ->Modo LD MNGT_LN_XCBR4 (1): ON
         |----> DO Pos: Posicion del interruptor XCBR4 (CARGAS_NC1): OFF
   -->Modo LD_MNGT_LN_XCBR5 (1): ON
        |----> DO Pos: Posicion del interruptor XCBR5 (CARGAS_NC2): OFF
     >Modo LD MNGT LN XCBR6 (1): ON
         |----> DO Pos: Posicion del interruptor XCBR6 (CARGAS_NC3): OFF
Modo LD_PV (1): ON
  --->Modo LD_MNGT_LN_DPVM (1): ON
         |----> DO MdulCfgTyp: Tipo de configuración del módulo PV: Concentrado
          ----> DO MdulWRtg: potencia nominal en vatios pico STC: 330.00 (Pmax/W)
          ----> DO MaxMdulV: Voltaje del módulo a máxima potenica en STC: 37.70 (Vmpp/V)
         ----> DO MaxMdulA: Corriente del módulo a máxima potenica en STC: 8.76 (Impp/A)
----> DO MdulOpnCctV: Voltaje del módulo en circuito abierto: 45.90 (Vcc/V)
          ----> DO MdulSrtCctA: Corriente del módulo en cortocircuito: 9.27 (Isc/A)
          ----> DO MdulWTmpDrt: % de reducción de la potencia en función de la Tº: -0.40 %
          ----> DO MdulATmpDrt: % de reducción de la corriente en función de la Tº: 0.06 %
          ----> DO MdulVTmpDrt: % de reducción de la tensión en función de la Tº: -0.31 %
     >Modo LD MNGT LN DPVA (1): ON
         |----> DO Typ: Tipo de configuración del módulo PV: Planta
          ----> DO MdulCnt: Números de módulos por serie: 11
          ----> DO StrgCnt: Números de series en paralelo por sub-matriz: 1
          ----> DO SubArrCnt: Número de sub-matrices en paralelo por matriz: 3
          ----> DO GrndConn: Tipo de conexión a tierra: Puesta a tierra positiva
          ----> DO ArrWRtg: Potencia nominal del array (Wp): 3633.00 Wp
    >Modo LD MNGT LN DPVC (1): ON
         |----> DO ArrModCtr: Modo seleccionado para el control de la potencia de salida de la matriz: Seguimiento del punto de máxima potencia (MPPT)
     >Modo LD MNGT LN MMDC (1): ON
           ---> DO Watt: Potencia medida en PV: 3006.00 V
           ---> DO Amp: Corriente medida en PV: 0.00 V
           ---> DO Vol: Voltaje medido en PV: 48.00 V
```

- Uso de la consola del PC para leer el modelo de la planta.
- El modelo se muestra siempre actualizado.
- Se pueden enviar comandos para actuar sobre la planta.


Interfaz gráfica para facilitar su uso

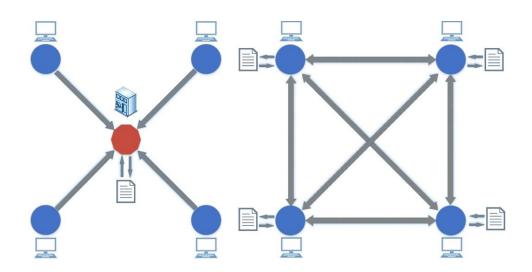

Cliente comercial

Análisis de tiempos

Media: 2,324 ms

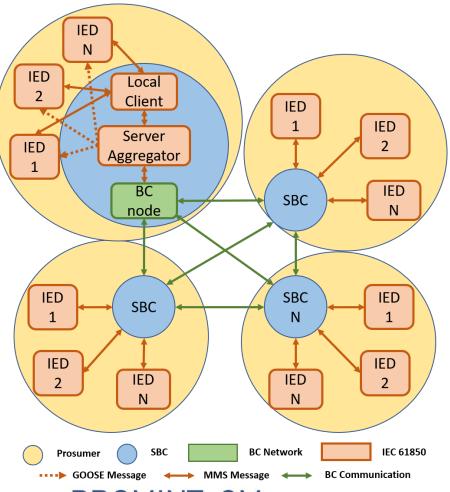
Mínimo: 1,739 ms

Máximo: 2,915 ms


- Prueba con 100 mensajes GOOSE consecutivos por cable Ethernet
- Todos por debajo de los 3 ms
- Ninguna otra de las tecnologías físicas analizadas sería válida

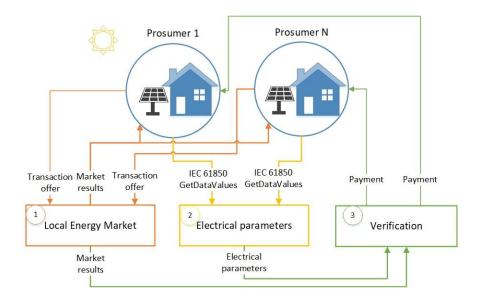
Comunicación P2P

- Se ha identificado la tecnología Blockchain como herramienta clave para crear redes de comunicación P2P en Microrredes.
- Al distribuir las comunicaciones y el control aumenta drásticamente la escalabilidad.
- o Compatible con el estándar IEC 61850.
- o Banco de pruebas formado por varias Raspberry Pi 4 Model B

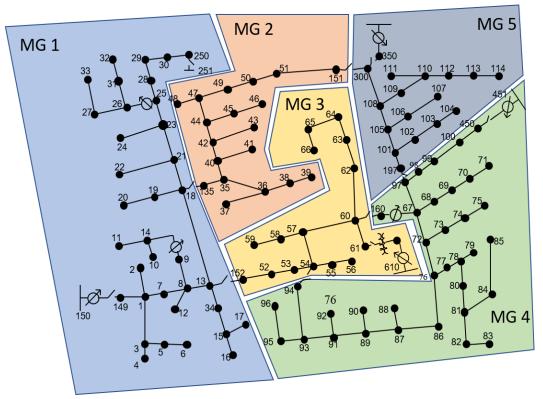


Propuesta de arquitectura de comunicaciones

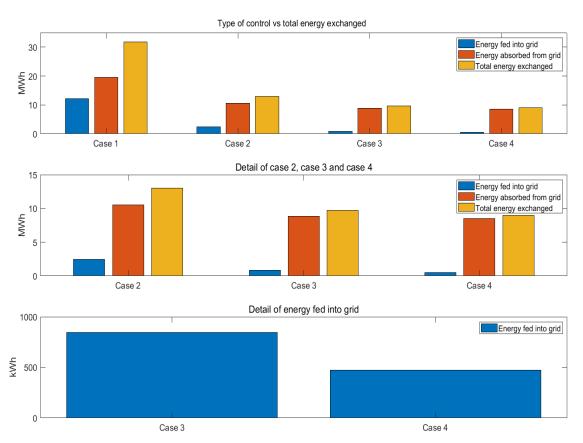
- Cada prosumidor tiene sus IEDs compatibles con el estándar IEC 61850
- Se añade un ordenador de placa simple a su instalación
- Incorpora un nodo
 Blockchain que se
 comunica con el resto de
 nodos de la red



• Mercado local de energía


- Se ha diseñado un mercado local para Microrredes mediante contratos inteligentes
- o Permite la compra-venta de energía entre usuarios de una Microrred
- o Aumenta el rendimiento de la inversión en generadores de pequeño tamaño y baterías
- o Asegura la inmutabilidad de los parámetros eléctricos, dificultando el fraude

Control sobre arquitectura de la Microrred



- Sobre el circuito estandarizado de pruebas IEEE-123
- Compuesto por 5 Microrredes
- Gestión de las interconexiones entre Microrredes y con la red principal

Resultados

- Reducción de los intercambios de energía con la red principal
- Reducción de pérdidas energéticas
- Niveles de voltaje y frecuencia dentro de márgenes en todo momento

Mejoras de seguridad

Cifrado de mensajes GOOSE y SMV (IEC 61850)

- o Requerimientos muy estrictos de latencia.
- No tienen implementada seguridad
- Hemos realizado pruebas con diferentes métodos de cifrado.
- El único que ha cumplido con los tiempos de latencia requeridos es el cifrado AES.

Tecnología Blockchain

- Asegura inmutabilidad de los datos
- Permite disponibilidad de datos en todos los nodos
- o Implementado en un dispositivo de bajo coste y bajo consumo.

Detector de intrusiones

- Análisis el tráfico con WireShark.
- Empleo de Suricata para detectar y rechazar los ataques.

Publicaciones

IEEE International Symposium on Industrial Electronics (ISIE)

"Integration of Blockchain with IEC 61850 for Internal Management of Microgrids"

DOI: https://doi.org/10.1109/ISIE45063.2020.9152542

• IEEE Access special section "KEY ENABLING TECHNOLOGIES FOR PROSUMER ENERGY MANAGEMENT":

"Addressing Challenges in Prosumer-Based Microgrids With Blockchain and an IEC 61850-Based Communication Scheme"

DOI: https://doi.org/10.1109/ACCESS.2020.3036340

Sensors special section "Intelligent Sensors":

Turning Base Transceiver Stations into Scalable and Controllable DC Microgrids Based on a Smart Sensing Strategy

DOI: https://doi.org/10.3390/s21041202

MUCHAS GRACIAS

