

Universidad de Alcalá

Grupo GEISER

Reunión Subcomité Científico-Técnico 11 de diciembre de 2020

Web: geiser.depeca.uah.es/promint

Índice

- Revisión de objetivos esperados
- Identificación de tecnologías para tipos de dato
- Pruebas realizadas
- Análisis de ciberseguridad
- Mejoras de seguridad
- Publicaciones

Revisión de los objetivos esperados

- Objetivo 1: Diseño, simulación y evaluación de la capa de comunicaciones para sistemas energéticos distribuidos operando en microrredes
 - Evaluar las diferentes alternativas
 - Revisión del estado del arte
 - Identificación de la mejor tecnología para la transmisión de cada tipo de dato
 - Proponer arquitectura de comunicaciones
 - Aplicación del protocolo de transmisión P2P
 - Garantizar la seguridad en la transmisión de datos

Evaluación de las diferentes alternativas

 Identificación de los requerimientos de latencia y ancho de banda para cada mensaje de la Microrred

Aplicaciones de la MG

Microgrid Messages	Bandwidth	Latency
Demand Response	14–100 Kbps	500 ms-several minutes
Distributed Energy Resources and Storage	9.6-56 Kbps	20 ms – 15 s
Distributed Management	9.6-100 Kbps	100 ms −2 s

Requerimientos de latencia de las funciones de la MG

Microgrid Messages	Delay Requirements
Protection information	4 ms
Monitoring information	1 s
Control information	16 ms - 100 ms
Operations and maintenance information	1 s
Messages requiring immediate actions at	1A:3 ms or 10 ms;1B: 20 ms or
receiving IEDs	100 ms
Continuous data streams from IEDs	3 ms or 10 ms
Synchronization messages	(Accuracy)

S. Marzal, R. Salas, R. González-Medina, G. Garcer´a, and E. Figueres, "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, vol. 82, pp. 3610 – 3622,

Evaluación de las diferentes alternativas

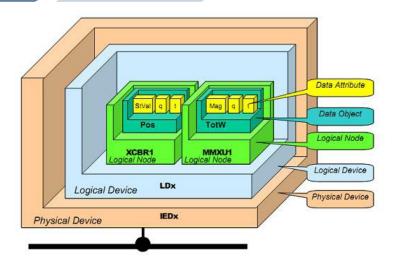
WAN Coverage area: 10km-100km Data rate: 1Mbps-1Gbps Technologies: Fiber Optics, WiMAX, PLC and Cellular NAN Coverage area: 100m-10km Data rate: 1-100kbps Technologies: PLC, ZigBee mesh network, WiFI mesh network, Cellular, DSL and WiMAX HAN/BAN/ IAN Coverage area: 1-100m Data rate: 1-100kbps Technologies: PLC, Bluetooth, Ethernet, ZigBee and WiFI

Cableadas

- Ethernet y Fibra Óptica
 - Alto coste en caso de no existir infraestructura.
 - Baja latencia e inmunidad al ruido. Gran ancho de banda.

Inalámbricas

- o WiFi
 - Bajo coste y gran ancho de banda.
 - Alcance bajo.
- LoRa
 - Bajo consumo
 - No es immune a interferencias.
- Móvil (LTE, 4G, 5G, ...)
 - Gran ancho de banda y alcance.
 - Pago mensual
- WiMAX
 - Alto coste



Evaluación de las diferentes alternativas

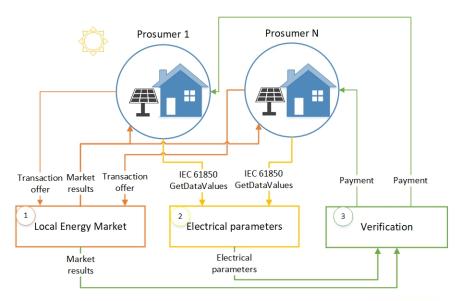
• IEC 61850

- o Diseñada en un principio para subestaciones.
- o Extensión 7-420 para DERs.
- Es el estándar más prometedor en Microrredes, todas las investigaciones en este campo lo emplean.
- Se construye sobre TCP/IP.
- Mensajes GOOSE/SV para acciones críticas.
- Permite mensajes entre iguales.
- Numerosas investigaciones lo emplean para realizar control distribuido en Microrredes (compatible con P2P)

IEC 61850 STACK PROTOCOL					
L4: Application Layer	MMS	SNMP	GOOSE/SV		
L3: Transport Layer	ТСР	UDP			
L2: Network Layer	IP				
L1: Link Layer	Ethernet				

Pruebas realizadas

- Modelado de instalación de autoconsumo en la tercera planta del edificio Politécnico según estándar IEC 61850.
 - o Baja disponibilidad de dispositivos comerciales.
 - o Hemos empleado una Raspberry Pi como conversor de estándares.
 - o Se han realizado pruebas de funcionamiento en modo autónomo y en modo operario.
 - o Pruebas realizadas sobre cable Ethernet y con WiFi.
- Medida de tiempos mensajes GOOSE y SV
 - o Con cable Ethernet tiempos de aproximadamente 1 ms.
- Pruebas LoRaWAN
 - Pruebas aún en curso.
 - o Alcance en un entorno real con obstáculos de aproximadamente 700 m.
 - Latencia alta (aún no se ha encontrado la configuración óptima)



Aplicación protocolo P2P

• Tecnología Blockchain

- Se ha probado la comunicación distribuida mediante la implementación de la tecnología Blockchain.
- Se ha creado un mercado local para MGs mediante contratos inteligentes.
- o Al distribuir las comunicaciones y el control aumenta drásticamente la escalabilidad.
- o Compatible con el estándar IEC 61850.
- o Banco de pruebas formado por varias Raspberry Pi 4 Model B

Análisis de ciberseguridad

Se debe asegurar:

- Confidencialidad
 - o Información de los usuarios.
 - o Datos del mercado eléctrico
- Integridad
 - Modificación de datos sin autorización
- Disponibilidad
 - Se debe garantizar la disponibilidad de los datos en un period de tiempo que dependiendo de cada tipo de dato, en un determinado periodo de tiempo.

Análisis de ciberseguridad

- Metodología MAGERIT.
 - o Elaborada por el Consejo Superior de Administración Electrónica del Gobierno de España.
 - o Minimiza los riesgos de implantación de nuevas tecnologías.
- Se han identificado los siguientes riesgos en MGs:

Integridad	Descripción
Fraude	Atribución del consumo eléctrico a otra vivienda o localización
Operación no autorizada	Funcionamiento incorrecto o fallo total de la MG
Confidencialidad	Descripción
Patrones de uso personal	Equipos domésticos instalados en la vivienda en función de su consumo, horario en que se encuentra el usuario en la vivienda. Usos comerciales.
Disponibilidad	Descripción
Datos no disponibles a tiempo	Desde retraso en la facturación a operación incorrecta o fallo total del sistema.

Mejoras de seguridad

Cifrado de mensajes GOOSE y SV (IEC 61850)

- o Requerimientos muy estrictos de latencia.
- No tienen implementada seguridad
- o Hemos realizado pruebas con diferentes métodos de cifrado.
- o El único que ha cumplido con los tiempos de latencia requeridos es el cifrado AES.

• Tecnología Blockchain

- Asegura inmutabilidad de los datos
- o Permite disponibilidad de datos en todos los nodos
- o Mercados de energía locales distribuidos
- o Implementado en un dispositivo de bajo coste y bajo consumo.

• Introducción de un detector de intrusiones (En curso)

- Analizar el tráfico con WireShark o similar.
- Emplear Suricata o similar para detectar y rechazar los ataques.

Publicaciones

IEEE International Symposium on Industrial Electronics (ISIE)

"Integration of Blockchain with IEC 61850 for Internal Management of Microgrids"

DOI: https://doi.org/10.1109/ISIE45063.2020.9152542

• IEEE Access *special section "KEY ENABLING TECHNOLOGIES FOR PROSUMER ENERGY MANAGEMENT"* el artículo:

"Addressing Challenges in Prosumer-Based Microgrids With Blockchain and an IEC 61850-Based Communication Scheme"

DOI: https://doi.org/10.1109/ACCESS.2020.3036340

MUCHAS GRACIAS

